Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Trop Med Infect Dis ; 8(3)2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2250849

ABSTRACT

We conducted a retrospective study using a population of patients who were hospitalized at Dr. Juan Graham Casasus Hospital in Villahermosa (Tabasco, Mexico) and had a positive RT-PCR test for SARS-CoV-2 between June 2020 and January 2022. We analyzed all medical records, including demographic data, SARS-CoV-2 exposure history, underlying comorbidities, symptoms, signs at admission, laboratory findings during the hospital stay, outcome, and whole-genome sequencing data. Finally, the data were analyzed in different sub-groups according to distribution during waves of the COVID-19 pandemic regarding Mexican reports from June 2020 to January 2022. Of the 200 patients who tested positive via PCR for SARS-CoV-2, only 197 had samples that could be sequenced. Of the samples, 58.9% (n = 116) were males and 41.1% (n = 81) females, with a median age of 61.7 ± 17.0 years. Comparisons between the waves of the pandemic revealed there were significant differences in the fourth wave: the age of patients was higher (p = 0.002); comorbidities such as obesity were lower (p = 0.000), while CKD was higher (p = 0.011); and hospital stays were shorter (p = 0.003). The SARS-CoV-2 sequences revealed the presence of 11 clades in the study population. Overall, we found that adult patients admitted to a third-level Mexican hospital had a wide range of clinical presentations. The current study provides evidence for the simultaneous circulation of SARS-CoV-2 variants during the four pandemic waves.

2.
International Journal of Translational Medicine ; 3(1):27-41, 2023.
Article in English | MDPI | ID: covidwho-2166612

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered a recent pandemic of respiratory disease and affected almost every country all over the world. A large amount of natural bioactive compounds are under clinical investigation for various diseases. In particular, marine natural compounds are gaining more attention in the new drug development process. The present study aimed to identify potential marine-derived inhibitors against the target proteins of COVID-19 using a computational approach. Currently, 16 marine clinical-level compounds were selected for computational screening against the 4 SARS-CoV-2 main proteases. Computational screening resulted from the best drug candidates for each target based on the binding affinity scores and amino acid interactions. Among these, five marine-derived compounds, namely, chrysophaentin A (-6.6 kcal/mol), geodisterol sulfates (-6.6 kcal/mol), hymenidin (-6.4 kcal/mol), plinabulin (-6.4 kcal/mol), and tetrodotoxin (-6.3 kcal/mol) expressed minimized binding energy and molecular interactions, such as covalent and hydrophobic interactions, with the SARS CoV-2 main protease. Using molecular dynamic studies, the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (ROG), and hydrogen bond (H-Bond) values were calculated for the SARS-CoV-2 main protease with a hymenidin docked complex. Additionally, in silico drug-likeness and pharmacokinetic property assessments of the compounds demonstrated favorable druggability. These results suggest that marine natural compounds are capable of fighting SARS-CoV-2. Further in vitro and in vivo studies need to be carried out to confirm their inhibitory potential.

3.
Front Immunol ; 13: 946770, 2022.
Article in English | MEDLINE | ID: covidwho-2022728

ABSTRACT

The current pandemic generated by SARS-CoV-2 has led to mass vaccination with different biologics that have shown wide variations among human populations according to the origin and formulation of the vaccine. Studies evaluating the response in individuals with a natural infection before vaccination have been limited to antibody titer analysis and evaluating a few humoral and cellular response markers, showing a more rapid and intense humoral response than individuals without prior infection. However, the basis of these differences has not been explored in depth. In the present work, we analyzed a group of pro and anti-inflammatory cytokines, antibody titers, and cell populations in peripheral blood of individuals with previous SARS-CoV-2 infection using BNT162b2 biologic. Our results suggest that higher antibody concentration in individuals with an earlier disease could be generated by higher production of plasma cells to the detriment of the presence of memory B cells in the bloodstream, which could be related to the high baseline expression of cytokines (IL-6 and IL-10) before vaccination.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , Humans , Interleukin-10 , Interleukin-6 , Receptors, CCR7 , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL